3rd European-American Workshop on NDE Reliability

TUTORIAL No 2

How to determine repeatability and reproducibility (R&R)

Dr Damir Markucic

damir.markucic@fsb.hr dmark@fsb.hr

University of Zagreb, Department of Quality, Faculty of Mechanical Engineering & Naval Architecture, Croatia

Tutorial topics

- 1. Introduction
- 2. Basics, terminology / definitions
- 3. R&R experiment (how to perform, layout, DoE)
- 4. R&R analysis (statistical analysis, examples)
 - 5. Conclusion remarks & discussion Literature

Concept of R&R as a measure of precision in measurement laboratories, was introduced & developed during 1978-1983 [2].

It was widely accepted but also criticised, and finally resulted with ISO 5725:1986.

As in any other field, first essential prerequisite is to exchange information, data and knowledge and to understand each other properly – so, convention about definitions is needed.

"Each term must have the same meaning for all of its users; it must therefore at the same time express a well defined concept and not to be in conflict with everyday language" [1].

First, we'll discuss two terms; accuracy and precision; so we'll come to R&R.

It is known from common everyday use that when we **repeat** some measurement or want to **reproduce** measurement result in some other occasion, we will almost never get exactly the same result.

We could observe same phenomena if we want to measure some quantity with different **systems** !

..... now, we can carry out simple measurement:

What time is

just now !

..... Is your watch an accurate and/or precise one ?

True time	My watch	Christine's watch	
10:00	10:00	10: 02	
11:00	11: 01	11:02	
12:00	12:02	12:02	
13:00	13: <mark>03</mark>	13: 02	
14:00	14: 02	14:02	
15: 00	15: 01	15: 02	

Which one you more prefer ?

2. Definitions / terminology ...

Accuracy, trueness, precision
R&R conditions and limits
Elements of test system
Systematic and random errors
Accepted reference value

Accuracy

designates closeness of agreement between a test result (*measurement result*) and the accepted reference value (*true value*) [1,3].

Notes The term precision should not be used for accuracy [1].

Trueness

designates closeness of agreement between the average value obtained from a large series of test result and an accepted reference value [3].

Notes

The measure of trueness is usually expressed in terms of bias [3]. Trueness has been referred to as "accuracy of the mean", what is not recommended [3].

Precision

designates variability of results, or closeness of the agreement between test results of repetitive measurements [3].

In total, the results of particular set of measurements will be (randomly) distributed around expected value.

The measure of dispersion of results gives us information about precision.

Accuracy (trueness and/or precision)

..... variability of results

..... variability of results

Both, trueness and precision are quantitative parameters.

We can estimate dispersion (*precision*) by calculation of **standard deviation**.

Also, we can estimate so-called "*true value*" by calculation of a **mean**.

..... variability of results

More important is that we can compare and analyse differences between particular sets of test results.

This directs us to the subject of repeatability and reproducibility.

Different variabilities

between different sets of test results regarding to different sources of variabilities.

..... definitions of R&R

Regarding factors (*elements*) of the system which contribute to the variability of the test results,

two **conditions of precision**, termed repeatability and reproducibility conditions,

have been found necessary and useful for describing the variability of a measurement method [3].

Repeatability conditions

Conditions where independent test results are obtained with the same method on identical test items in the same laboratory by the same operator using the same equipment within short intervals of time [3].

Repeatability is precision under repeatability conditions.

Reproducibility conditions

Conditions where test results are obtained with the same method on identical test items in different laboratories with different operators using different equipment [3].

Reproducibility is precision under reproducibility conditions.

..... extremes of variability

Thus repeatability and reproducibility are the two extremes of precision.

Repeatability describes **minimum** and **reproducibility** the **maximum variability** in results.

Repeatability limit, r

The value less than or equal to which the absolute difference between two test results obtained under repeatability conditions may be expected to be with a probability of 95 % [3].

$$r = f \cdot s_r \sqrt{2}$$

Reproducibility limit, *R*

The value less than or equal to which the absolute difference between two test results obtained under reproducibility conditions may be expected to be with a probability of 95 % [3].

$$R = f \cdot s_R \sqrt{2}$$

Repeatability

Illustration of the meaninig of **repeatability** standard deviation and limit.

Reproducibility

Illustration of the meaninig of **reproducibility** standard deviation and limit.

Contributing elements of "test system" [4]

Operator
Equipment
Calibration
Time

Elements of "test system" regarding NDT/mine_det

- \clubsuit **Personnel** $(operator/technician <math>\Rightarrow$ human factor)
- Equipment (instruments, tools, utensils, probes/sensors, manipulators, spare parts & materials, reference blocks, ...)
- **♥ Procedure**
 - (measurement/test method, calibration)
- State object / measured entity

(any characteristic: microstructure, geometry, surface conditions, orientation, etc.)

Senvironment

(temperature, humidity, viewing conditions)

Systematic error

Is a **mean** that would result from an infinite number of measurements of the same measurand carried out under repeatability conditions minus a **true value** of the measurand [1].

Random error

Is a **result** of a measurement **minus** the **mean** that would result from an infinite number of measurements of the same measurand carried out under **repeatability conditions** [1].

Because only a finite number of measurements can be made, it is possible to determine only an estimate of random error [1].

Accepted reference value

A value that serves as an agreed-upon reference for comparison [3].

Could be derived as *theoretical or established value*, *an assigned or certified value*, *a consensus*.

When not available, the expectation of the quantity, i.e. the mean of a specified population of measurements [3].

3. R&R experiment

Experiment layout
How to organise and carry out the experiment
DoE

Experiment layout

The objective of the experiment is to determine the precision obtainable by the general population of operators performing standard measurement (test) method.

Each combination of
 a laboratory and a level
 is called cell.
 Each cell contains *n* repetitive test results.

Experiment layout

p Lab.	n	le vel 1	level 2	le ve l 3
	1	25,3	37,5	43,9
Α	2	25,2	37,7	44,4
	3	25,3	37,7	44,0
	1	25,4	37,4	44,4
В	2	25,4	37,5	44,5
	3	25,3	37,7	44,9
	1	25,1	37,7	44,3
С	2	25,3	37,3	44,9
	3	25,0	37,6	44,0
	1	25,1	37,4	44,6
D	2	25,5	37,2	44,6
	3	25,5	37,5	44,0
	1	25,3	37,5	44,3
E	2	25,2	37,4	44,5
	3	25,3	37,7	44,7
Experiment layout

q levels

p laboratories

n replicate test results

Perform the measurements according to the specified standard method !

Group of *n* measurements

 on each level
 shall be carried out under repeatability conditions
 (short time,
 without intermediate recalibration of the apparatus
 unless this is an integral part of standard procedure).

 It is essential that a group of *n* measurements on each level be performed independently (*independent repetitive test results*).

Sometimes, despite instructions to the operator, during obtaining group of *n* measurements at specific level, previous results may influence subsequent test results, and thus the repeatability variance. Then the codification of samples should be considered in such way that the operator will not know which are the replicates for a given level. (*repeatability conditions?*)

It is not essential that all the q groups of n measurements each be performed strictly within short interval; different groups of measurements may be carried out on different days.

 Measurements of all *q* levels shall be performed *by one and the same operator*. In addition, the *n* measurements at a given level shall be performed *using the same equipment* throughout.

(3)

If unexpectedly operator becomes unavailable, another operator may complete measurements but this can only occur *between two of the q groups*, and it has to be reported.

 \clubsuit A time limit shall be given....

All samples shall be clearly and properly labeled. (*identification*)

Performance - Tips

(1)

 \clubsuit For some measurements,

there may be in fact a *team* of operators, each of whom performs some specific part of the procedure.In such case, the team shall be regarded as "*the operator*".Any change in team indicates "different operator".

In precision experiment test results shall be reported to at least one more digit than specified in the standard procedure.

Performance - Tips

For the purposes of this ISO, a *laboratory* is considered to be a combination of the operator, the equipment and the test site [3].

One test site (or laboratory) may thus provide several "laboratories" (several operators each with the independent sets of equipment and situations).

Performance - Tips

 It should be pointed out to the operators that the purpose of the exercise is to *discover the extent to which results can vary in practice*, so that there will be less temptation for them to discard or rework results that they feel are inconsistent.

 Operators shall report any anomalies or difficulties, rather than adjusting test result in order to avoid missing data. (*There is R&R analysis specifically for experiments* with missing data, and also for redundant data and outliers.)

4. R&R analysis

Statistical analysis (*step by step*)
Calculation of R&R values
Examples

- to determine R&R values for a standard measurement/test method.
- **1) Premises** [3, 4]:
- repeatability conditions within labs
 (*n replicate test results @ q levels*)
- \checkmark reproducibility conditions between *p* labs
- it is assumed that distribution of the test results is approximately normal
- \clubsuit the model for test result is y = m + B + e, *m* is a general mean (expectation), *B* bias, *e* error.
- \clubsuit measurements on a continuous scale

2) Calculation of R&R values (parameters) [4]:

 $rightarrow s_W^2$ is the estimate of the within-lab variance $var(e) = s_W^2$ for each cell s_i^2

 \mathfrak{V} s_r^2 is the estimate of **repeatability** variance,

formally, it is the arithmetic mean of $s_W^2 \dots s_r^2 = \frac{\sum_{i=1}^p (n_i - 1)s_i^2}{\sum_{i=1}^p (n_i - 1)}$

2) Calculation of R&R values (parameters) [4]:

S_L² is the estimate of the **between-lab** variance var(B) = S_L²
S_L² =
$$\frac{s_d^2 - s_r^2}{=}$$
 at each of q levels,
N
S_R² is the estimate of **reproducibility** variance, $s_R^2 = s_r^2 + s_L^2$

 $\bigvee M_i$ are cells' means, *m* is a "general mean" @ certain level

(3)

- **3)** To check data for stragglers and outliers by means of statistical tests [4]:
- Cohran's test. It checks the homogeneity of variances at certain level.
- ⇔ Grubbs' tests.
 - It checks the "consistency" of the cells' means.
- Solution These tests check existance of stragglers and outliers at 5 % and 1 % significance level.

4) Determination of R&R limits [5]:

- $\stackrel{\text{then}}{\Rightarrow}$ when a quantity is based on sums (or differences) of *n* independent estimates, then the resultant quantity has standard deviation $S\sqrt{n}$
- Solution Soluti Solution Solution Solution Solution Solution Solution

5) Checking the acceptability of test results obtained under repeatability conditions.

When examining :

two single test results the comparison shall be made with repeatability limit, r

 $r = 2.8 \cdot s_r$

 \checkmark two groups of measurements in **one** laboratory, n_i measurements giving arithmetic mean, comparison shall be made with critical difference, *CD*

$$CD = r_{\sqrt{\frac{1}{2n_1} + \frac{1}{2n_2}}}$$

5) Checking the acceptability of test results obtained under reproducibility conditions.

When examining :

two single test results the comparison shall be made with reproducibility limit, R $R = 2.8 \cdot s_{R}$

two groups of measurements in two laboratories, n_i measurements giving arithmetic mean, comparison shall be made with critical difference, CD

$$CD = \sqrt{R^2 - r^2 \left(1 - \frac{1}{2n_1} - \frac{1}{2n_2}\right)}$$

Example #3 - our R&R experiment !

"Procedure" for measurements:

- ⇔ sheet of paper with "specimens" A, B, C, D, E, F,
- you are measuring length of dimension
 in direction (vert. and hor.)
 as it is required in the columns of the table for test results,
- \Rightarrow only one (*repetitive*) measurement at this moment, n=1,
- ⇔ all measurements in mm !
- \Rightarrow please estimate up to the one tenth of the mm.

Example #3 - our R&R experiment !

Ultrasonic thickness measurements were carried out by 8 teams consisting of:

- 4 8 operators,
- ♦ 8 different digital ultrasonic instruments with A-scan (flaw detectors),
- (8) different TR and single transducer probes,

using different couplants (greas, oil, gel),
 where 8 operators with different equipment represent 8 differently equipped laboratories (*p*=8).
 DoE 8x3 (*n*=3)

DoE 8 x 3, q=3

Furthermore:

- 3 repetitive measurements, n=3,
- 3 specimens (3 levels of thickness, q=3),
- ⇔ digital readout; appearance was set to one decimal place,
- ⇔ no (re)calibration during the measurements,
- ⇔ approx. 1 hour for all measurements,
- \clubsuit all operators were in the same room O.....

Ultrasonic testing; A scan instruments; straight beam probes.

Measurement of the location of the indication (2 circled edges). Results are given as subtraction to the "true value". Results are in mm, measured with one decimal place.

DoE 6 x 6, q=2

Furthermore:

- ⇒ 6 labs were combinations of
 3 probes and 2 instruments, p=6
- \Rightarrow only one operator !?!
- ⇒ test results were taken in 3 days, each day 2 diverse combination (probe-instrument)

Level 2, @40mm

.... back to: R&R step by step "procedure"

When R&R analysis has been successfully performed, and if the number of involved laboratories with "valid" test results is in accordance with ISO recommendations [3], then, one could come up to the publication of the conclusions, that is, to the publication of results in form of statements.

Publication of analysis results / statements

The difference between two test results found on identical test material by one operator using the same apparatus within the shortest feasible time interval will exceed the repeatability limit (r) on average not more than once in 20 cases (5%) in the normal and correct operation of the method. [5]

Publication of analysis results / statements

Test results on identical test material reported by two laboratories will differ by more than the reproducibility limit (R) on average not more than once in 20 cases (5%) in the normal and correct operation of the method. [5]

Example #3 - our R&R experiment !

5. Conclusion remarks & discussion

Discussion of examples proposed by participants
 Conclusions

Discussion - your ideas for R&R analysis

If you have ideas how to organize
 R&R experiment (DoE) please give us an example

(examples from your professional occupation)

Discussion - your ideas for R&R analysis

Perhaps R&R experiment for Mine Detection
which method, system, conditions,
consider certain "population" of applications from practice,
which implicates ranges of operators, equipment, levels....

We want to carry out R&R analysis, with focuse on NDT/demining applications/methods.

First we have to design R&R experiment. To design R&R experiment we have to be aware about:

inherent characteristics of the (test/measurement) process under the consideration, and

- that the results are obtained by the particular (test/measurement) system
- ⇔ under the certain *conditions*.

- The goal is to get a *realistic demonstration* (good representation) of the measurement/test method, not an "artificial" one.
 ("... to represent a realistic cross-section with the R&R experiment." [3]).
- Finally, by quantifying R&R
 we can *determine process/system capabilities*.
 For this we need competent interpretation
 of R&R parameters and analysis.
- The conclusions are valid over the range of the concerned levels' values.

Additionally, R&R analysis opens up further possibilities:

 \clubsuit check of the acceptability of test results,

- Assessment of stability of test results over a period of time within a laboratory,
- \clubsuit assessment of the laboratory performance,
- ♥ comparison of alternative measurement methods.

Furthermore, R&R also provides:

identification and differentiation of influencing factors,
 quantification of the specific influence and
 better understanding of the behavior/response of particular test system.

@ The end ...

Why we were listening all this??!?We already know how to calculate standard deviations, arithmetic means, how to perform statistical tests (ANOVA, t-test), how to determine system or process capability, etc.....

Well, I like the way how test results determine limits for themselves giving quantitative criteria.
Using proposed ISO model I keep my NDT system under control !
maybe you will like it too ! ^(C)

... imperfections still exist !

... they need to be corrected in the future [1].

Thank you for your attention and co-operation !

Literature

- [1] International Vocabulary of basic and general terms in metrology, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML, 1984,1987.
- [2] D.Benèiæ, F.Dusman. *Concept and significance of repeatability and reproducibility*, Geodetski list, Zagreb, 1995.
- [3] ISO 5725-1:1994. Accuracy (trueness and precision) of measurement methods and results -- Part 1: General principles and definitions
- [4] ISO 5725-2:1994. -- Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method
- [5] ISO 5725-6:1994 -- Part 6: Use in practice of accuracy values

